Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 438
Filter
1.
Environ Pollut ; 349: 123990, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38631447

ABSTRACT

An indigenous bacterium Pseudomonas sp. EN-4 had been reported earlier for its ability to co-metabolise 4-bromophenol (4-BP), in presence of phenol (100 mg/L) as co-substrate. The present study was undertaken to validate the efficacy of biotransformation by comparing the toxicity profiles of untreated and EN-4 transformed samples of 4-BP, using both plant and animal model. The toxicity studies in Allium cepa (A. cepa) indicated to lowering of mitotic index (MI) from 12.77% (water) to 3.33% in A. cepa bulbs exposed to 4-BP + phenol, which reflects the cytotoxic nature of these compounds. However, the MI value significantly improves to 11.36% in its biologically treated counterpart, indicating normal cell growth. This was further supported by significant reduction in chromosomal aberrations in A. cepa root cells exposed to biologically treated samples of 4-BP as compared to untreated controls. The oxidative stress assessed by comparing the activity profiles of different marker enzymes showed that the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) were reduced by 56%, 72%, and 37% respectively, in EN-4 transformed samples of 4-BP + phenol compared to its untreated counterpart. Similar trends were evident in the comet assay of fish (Channa punctatus) blood cells exposed to untreated and biologically treated samples of 4-BP. The comparative studies showed significant reduction in tail length (72.70%) and % tail intensity (56.15%) in fish blood cells exposed to EN-4 treated 4-BP + phenol, compared to its untreated counterpart. The soil microcosm studies validated the competency of the EN-4 cells to establish and transform 4-BP in soil polluted with 4-BP (20 mg/kg) and 4-BP + phenol (20 + 100 mg/kg). The isolate EN-4 achieved 98.08% transformation of 4-BP in non-sterile microcosm supplemented with phenol, indicating to potential of EN-4 cells to establish along with indigenous microflora.


Subject(s)
Onions , Phenols , Pseudomonas , Phenols/toxicity , Phenols/metabolism , Pseudomonas/metabolism , Animals , Onions/drug effects , Oxidative Stress/drug effects , Biodegradation, Environmental , Soil Pollutants/toxicity , Biotransformation , Superoxide Dismutase/metabolism
2.
Braz. j. biol ; 83: 1-9, 2023. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468805

ABSTRACT

For many centuries human populations have been suffering and trying to fight with disease-bearing mosquitoes. Emerging and reemerging diseases such as Dengue, Zika, and Chikungunya affect billions of people around the world and recently has been appealing to control with chemical pesticides. Malathion (MT) is one of the main pesticides used against mosquitoes, the vectors of these diseases. This study aimed to assess cytotoxicity and mutagenicity of the malathion for the bioindicator Allium cepa L. using a multivariate and integrative approach. Moreover, an appendix table was compiled with all available literature of insecticides assessed by the Allium cepa system to support our discussion. Exposures during 48h to 0.5 mg mL-¹ and 1.0 mg mL-¹ MT were compared to the negative control (distilled water) and positive control (MMS solution at 10 mg L-¹). The presence of chromosomal aberrations, micronuclei frequency, and mitotic index abnormalities was evaluated. Anaphase bridges were the alterations with higher incidence and presented a significantly elevated rate in the concentration of 0.5 mg mL-¹, including when compared to the positive control. The integrative discriminant analysis summarizes that MT in assessed concentrations presented effects like the positive control, corroborating its potential of toxicity to DNA. Therefore, it is concluded that MT in its pure composition and in realistic concentrations used, has genotoxic potential in the biological assessment of A. cepa cells. The multivariate integrative analysis was fundamental to show a whole response of all data, providing a global view of the effect of MT on DNA.


Por muitos séculos, as populações humanas sofrem e tentam combater os mosquitos transmissores de doenças. Doenças emergentes e reemergentes como Dengue, Zika e Chikungunya afetam bilhões de pessoas em todo o mundo e, recentemente, vem apelando ao controle com pesticidas químicos. O Malation (MT) é um dos principais pesticidas usados contra mosquitos, vetores dessas doenças. O objetivo deste estudo foi avaliar a citotoxicidade e a mutagenicidade do MT para o bioindicador Allium cepa L. usando uma abordagem multivariada e integrativa. Além disso, uma tabela suplementar foi compilada com toda a literatura disponível de inseticidas avaliada pelo sistema Allium cepa para apoiar nossa discussão. Exposições ao MT durante 48h a 0,5 mg mL-¹ e 1,0 mg mL-¹ foram comparadas a um controle negativo (água destilada) e um controle positivo (10 mg L-¹ de MMS). Foram avaliadas a presença de aberrações cromossômicas, frequência de micronúcleos e anormalidades no índice mitótico. As pontes anafásicas foram as alterações com maior incidência e apresentaram uma taxa significativamente elevada na concentração de 0,5 mg mL-¹, inclusive quando comparadas ao controle positivo. A análise discriminante integrativa resume que o MT nas concentrações avaliadas apresentou efeitos semelhantes ao controle positivo, corroborando seu potencial de toxicidade para o DNA. Portanto, conclui-se que o MT, em sua composição pura e nas concentrações realistas utilizadas, possui potencial genotóxico na avaliação biológica de células de A. cepa. A análise integrativa multivariada foi fundamental para mostrar uma resposta completa de todos os dados, fornecendo uma visão global do efeito da MT no DNA.


Subject(s)
Aedes , Onions/drug effects , Onions/genetics , Onions/toxicity , Organophosphate Poisoning , Malathion
3.
Sci Rep ; 12(1): 2195, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140281

ABSTRACT

The present study aimed to assess the toxic effects of pendimethalin herbicide and protective role of curcumin using the Allium test on cytological, biochemical and physiological parameters. The effective concentration (EC50) of pendimethalin was determined at 12 mg/L by the root growth inhibition test as the concentration reducing the root length by 50%. The roots of Allium cepa L. was treated with tap water (group I), 5 mg/L curcumin (group II), 10 mg/L curcumin (group III), 12 mg/L pendimethalin (group IV), 12 mg/L pendimethalin + 5 mg/L curcumin (group V) and 12 mg/L pendimethalin + 10 mg/L curcumin (group VI). The cytological (mitotic index, chromosomal abnormalities and DNA damage), physiological (rooting percentage, root length, growth rate and weight gain) and oxidative stress (malondialdehyde level, superoxide dismutase level, catalase level and glutathione reductase level) indicators were determined after 96 h of treatment. The results revealed that pendimethalin treatment reduced rooting percentage, root length, growth rate and weight gain whereas induced chromosomal abnormalities and DNA damage in roots of A. cepa L. Further, pendimethalin exposure elevated malondialdehyde level followed by antioxidant enzymes. The activities of superoxide dismutase and catalase were up-regulated and glutathione reductase was down-regulated. The molecular docking supported the antioxidant enzymes activities result. However, a dose-dependent reduction of pendimethalin toxicity was observed when curcumin was supplied with pendimethalin. The maximum recovery of cytological, physiological and oxidative stress parameters was recorded at 10 mg/L concentration of curcumin. The correlation studies also revealed positive relation of curcumin with rooting percentage, root length, weight gain, mitotic activity and glutathione reductase enzyme level while an inverse correlation was observed with chromosomal abnormalities, DNA damage, superoxide dismutase and catalase enzyme activities, and lipid peroxidation indicating its protective effect.


Subject(s)
Aniline Compounds/toxicity , Curcumin/pharmacology , Herbicides/toxicity , Onions/genetics , Plant Roots/genetics , Protective Agents/pharmacology , Chromosome Aberrations/drug effects , Correlation of Data , DNA Damage/drug effects , Dose-Response Relationship, Drug , Lipid Peroxidation/drug effects , Molecular Docking Simulation , Onions/drug effects , Onions/metabolism , Oxidative Stress/drug effects , Oxidoreductases/drug effects , Oxidoreductases/metabolism , Plant Roots/drug effects , Plant Roots/metabolism
4.
J Ethnopharmacol ; 289: 115003, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35051606

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: One of the most popular plants used to treat diseases in Brazil is Lantana fucata. Like most herbal medicines, its consumption is based on popular knowledge, which, despite being considered effective, may cause side effects. AIM OF THE STUDY: Since the scientific data on the pharmacological properties of L. fucata are still incipient, this research aimed to evaluate the cytotoxic and genotoxic potential of different types of extracts (infusion, aqueous and hydroalcoholic), characterizing them chemically. MATERIALS AND METHODS: The cytotoxicity assay was performed by the A. cepa model. The cytotoxicity parameters studied were number of dividing cells and percentage mitotic index (%MI). RESULTS: The result of the A. cepa assay showed that there was a decrease in the number of dividing cells and the percentage mitotic index as concentrations increased, for all extracts, indicating cytotoxicity. However, the hydroalcoholic extract was the most cytotoxic. Chromatography analysis allowed the characterization of secondary metabolites in the extracts, which were very similar. However, a greater abundance of flavonoids and triterpenoids was observed in the hydroalcoholic extract, suggesting that these compounds are responsible for its greater toxicity. CONCLUSIONS: Since the highest doses of extracts showed to have a cytotoxic effect, it is suggested that the ingestion of this species occurs in a moderate way.


Subject(s)
Lantana/chemistry , Onions/drug effects , Plant Extracts/toxicity , Brazil , Flavonoids/isolation & purification , Flavonoids/toxicity , Mutagenicity Tests , Plant Extracts/chemistry , Plant Leaves , Secondary Metabolism , Triterpenes/isolation & purification , Triterpenes/toxicity
5.
Environ Pollut ; 294: 118660, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34896221

ABSTRACT

One possible way to reduce the environmental impacts of pesticides is by nanostructuring biocides in nanocarriers because this promotes high and localized biocidal activity and can avoid toxicity to non-target organisms. Neem oil (NO) is a natural pesticide with toxicity concerns to plants, fish, and other organisms. Thus, loading NO in a safe nanocarrier can contribute to minimizing its toxicity. For this study, we have characterized the integrity of a nanosilica-neem oil-based biocide delivery system (SiO2NP#NO BDS) and evaluated its effectiveness in reducing NO toxicity by the Allium cepa test. NO, mainly consisted of unsaturated fatty acids, was well binded to the SiO2NP with BTCA crosslinker. Overall, this material presented all of its pores filled with the NO with fatty acid groups at both the surface and bulk level of the nanoparticle. The thermal stability of NO was enhanced after synthesis, and the NO was released as zero-order model with a total of 20 days without burst release. The SiO2NP#NO BDS was effective in reducing the individual toxicity of NO to the plant system. NO in single form inhibited the seed germination of A. cepa (EC50 of 0.38 g L-1), and the effect was no longer observed at the BDS condition. Contrarily to the literature, the tested NO did not present cyto- and geno-toxic effects in A. cepa, which may relate to the concentration level and composition.


Subject(s)
Disinfectants , Glycerides , Onions/toxicity , Terpenes , Animals , Disinfectants/toxicity , Glycerides/toxicity , Nanoparticles , Onions/drug effects , Silicon Dioxide
6.
Braz. j. biol ; 82: 1-6, 2022. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1468455

ABSTRACT

Flavoring additives are of great technological importance for the food industry. However, there is little information regarding the toxicological properties of these micro-ingredients, especially at the cellular level. The present study used meristematic root cells of Allium cepa L. to evaluate the toxicity of a liquid, aroma and flavor synthetic chocolate additive, manufactured and widely marketed throughout Brazil and exported to other countries in South America. The flavoring concentrations evaluated were 100.00; 50.00; 25.00; 1.00; 0.50 and 0.25 µL/L, where the highest concentration established was one-hundred times lower than that commercially suggested for use. The concentration 100 µL/L substantially reduced cell division of meristems within 24- and 48-hours exposure. Concentrations from 100.00 to 0.50 µL/L resulted in a significant number of prophases to the detriment of the other phases of cell division, indicating an aneugenic activity, and induced a significant number of cellular changes, with emphasis on micronuclei, nuclear buds and chromosomal breaks. Under the established analysis conditions, with the exception of concentration 0.25 µL/L, the flavoring of chocolate caused cytotoxicity, genotoxicity and mutagenicity to root meristems.


Os aditivos aromatizantes têm grande importância tecnológica para a indústria de alimentos. Contudo, poucas são as informações quanto as propriedades toxicológicas desses microingredientes, especialmente, em nível celular. No presente estudo avaliou-se, sobre as células meristemáticas de raízes de Allium cepa L., a toxicidade de um aditivo sintético líquido de aroma e sabor de chocolate, fabricado e amplamente comercializado em todo Brasil, e exportado para outros países da América do Sul. As concentrações de aromatizante avaliadas foram 100,00; 50,00; 25,00; 1,00; 0,50 e 0,25 µL/L, onde a maior concentração estabelecida foi cem vezes menor que a sugerida comercialmente para uso. Com base na interpretação dos resultados, a concentração 100 µL/L reduziu substancialmente a divisão celular dos meristemas nas 24 e 48 horas de exposição. As concentrações 100,00 a 0,50 µL/L demonstraram número significativo de prófases em detrimento as outras fases da divisão celular, indicando ação aneugênica, e induziram número significativo de alterações celulares, com ênfase a micronúcleos, broto nucleares e quebras cromossômicas. Nas condições de análises estabelecidas, com exceção a concentração 0,25 µL/L, o aromatizante de chocolate causou citotoxicidade, genotoxicidade e mutagenicidade aos meristemas radiculares.


Subject(s)
Food Additives/administration & dosage , Food Additives/toxicity , Onions/drug effects
7.
ScientificWorldJournal ; 2021: 5582697, 2021.
Article in English | MEDLINE | ID: mdl-34504409

ABSTRACT

Biochar is a carbon-rich product, which is processed by pyrolyzing biomass to improve soil properties and maintain environmental sustainability. This study aim was to investigate the effect of biochar and inorganic fertilizer on soil properties, growth, and yield. Four treatments and four replications have been used for the experimental plots using Randomized Complete Block Design (RCBD). Soil physiochemical properties have been investigated based on soil samples within 0-30 cm depth in each plot. The two types of biochar (grass and chat waste) have been used for the treatments. The pyrolyzing temperature required for grass and chat waste is 250°C and 1100°C, respectively. The plant height, total yield, and the marketable and nonmarketable yield of onion have been examined. The analysis showed that treatment with grass biochar and inorganic fertilizer had a similar effect on soil properties but chat (Catha edulis) biochar had a lower effect on soil properties. The total yield and days to 70% maturity have been increased due to the cumulative treatment of grass biochar and inorganic fertilizer. The biochar of grass and inorganic fertilizer have been significantly increased in marketable bulb yield, but unmarketable yield becomes decreased. The chat waste and controlled treatments shown an increased unmarketable yield and declined marketable bulb yield. Overall, biochar can substitute the inorganic fertilizer, which can help to improve the w soil fertility and environmental sustainability. Therefore, biochar has a win-win solution.


Subject(s)
Charcoal/pharmacology , Crops, Agricultural/drug effects , Fertilizers/analysis , Onions/drug effects , Agriculture/methods , Catha/chemistry , Charcoal/chemistry , Crops, Agricultural/growth & development , Ethiopia , Humans , Onions/growth & development , Soil/chemistry , Tropical Climate
8.
Molecules ; 26(14)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34299471

ABSTRACT

Phenylphenalenones, metabolites found in Schiekia timida (Haemodoraceae), are a class of specialized metabolites with many biological activities, being phytoalexins in banana plants. In the constant search to solve the problem of glyphosate and to avoid resistance to commercial herbicides, this work aimed to investigate the phytotoxic effect of the methanolic extract of S. timida seeds. The chemical composition of the seed extract was directly investigated by NMR and UPLC-QToF MS and the pre- and post-emergence phytotoxic effect on a eudicotyledonous model (Lactuca sativa) and a monocotyledonous model (Allium cepa) was evaluated through germination and seedling growth tests. Three concentrations of the extract (0.25, 0.50, and 1.00 mg/mL) were prepared, and four replicates for each of them were analyzed. Three major phenylphenalenones were identified by NMR spectroscopy: 4-hydroxy-anigorufone, methoxyanigorufone, and anigorufone, two of those reported for the first time in S. timida. The presence of seven other phenylphenalenones was suggested by the LC-MS analyses. The phenylphenalenone mixture did not affect the germination rate, but impaired radicle and hypocotyl growth on both models. The effect in the monocotyledonous model was statistically similar to glyphosate in the lowest concentration (0.25 mg/mL). Therefore, although more research on this topic is required to probe this first report, this investigation suggests for the first time that phenylphenalenone compounds may be post-emergence herbicides.


Subject(s)
Lactuca/growth & development , Musa/chemistry , Onions/growth & development , Phenalenes/toxicity , Plant Extracts/toxicity , Seeds/chemistry , Germination , Lactuca/drug effects , Onions/drug effects , Toxins, Biological/toxicity
9.
J Toxicol Environ Health A ; 84(18): 743-760, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34120581

ABSTRACT

Jatropha mollissima is used in folk medicine as antimicrobial, antiparasitic, and larvicidal. However, few toxicogenetic studies have been carried out. Therefore, the aim of this study was to determine the phytochemical profile of ethanolic leaf extract of J. mollissima (EEJM) as well as potential cytotoxic, mutagenic, and antimutagenic properties. The EEJM was subjected to successive fractionation for the isolation of secondary metabolites, and five concentrations (0.01; 0.1; 1; 10 and 100 mg/ml) of extract were investigated using Allium cepa assay and the Somatic Mutation and Recombination (SMART) test. The mitotic index and % damage reduction were analyzed for A. cepa and the frequency of mutant hair for SMART. The presence of coumarins, alkaloids, flavonoids, saponins, and tannins was detected, while spinasterol and n-triacontane were the isolates identified for the first time for this species. EEJM did not exhibit cytotoxicity and was not mutagenic at 1 or 10 mg/ml using A. cepa and all concentrations of EEJM were not mutagenic in the SMART test. A cytoprotective effect was found at all concentrations. At 1 or 10 mg/ml EEJM exhibited antimutagenicity in A. cepa. In SMART, the protective effect was observed at 0.1 to 100 mg/ml EEJM. Our results demonstrate the important chemopreventive activity of EEJM, a desired quality in the search for natural anticarcinogenic compounds.


Subject(s)
Jatropha/chemistry , Mutagenicity Tests , Onions/drug effects , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Protective Agents/pharmacology , Dose-Response Relationship, Drug , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry
10.
J Plant Physiol ; 262: 153437, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34034041

ABSTRACT

Detrimental effects caused by the overuse of synthetic agrochemicals have led to the development of natural biostimulants such as seaweed extracts and plant growth-promoting rhizobacteria (PGPR) being used as an alternative, environmentally-friendly technology to improve crop growth and increase agricultural yields. The present study aimed to investigate the interactions between PGPR and a commercial seaweed extract on the growth and biochemical composition of onion (Allium cepa). A pot trial was conducted under greenhouse conditions where onion plants were treated individually with the two PGPR, namely Bacillus licheniformis (BL) and Pseudomonas fluorescens (PF) and a seaweed extract Kelpak® (KEL) and combinations of KEL + BL and KEL + PF. Growth and yield parameters were measured after 12 weeks. KEL-treated plants showed the best growth response and overcame the inhibitory effects of BL treatment. KEL-treated plants also had the highest chlorophyll content. PGPR application improved the mineral nutrition of onion with these plants having the highest mineral content in the leaves and bulb. All biostimulant treatments increased the endogenous cytokinin and auxin content with the highest concentrations generally detected in the PF-treated plants. These results suggest that co-application of different biostimulant classes with different modes of action could further increase crop productivity with an improvement in both growth and nutrition content being achieved in onion with the co-application of a seaweed extract and PGPR.


Subject(s)
Bacillus licheniformis , Onions/growth & development , Plant Extracts/pharmacology , Pseudomonas fluorescens , Seaweed/chemistry , Bacillus licheniformis/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Crop Production/methods , Onions/drug effects , Onions/microbiology , Onions/physiology , Plant Growth Regulators/metabolism , Pseudomonas fluorescens/metabolism
11.
Molecules ; 26(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946396

ABSTRACT

The increasing culinary use of onion (Alium cepa) raises pressure on the current production rate, demanding sustainable approaches for increasing its productivity worldwide. Here, we aimed to investigate the beneficial effects of licorice (Glycyrrhiza glabra) root extract (LRE) in improving growth, yield, nutritional status, and antioxidant properties of two high-yielding onion cultivars, Shandaweel and Giza 20, growing under field conditions in two consecutive years. Our results revealed that pretreatments of both onion cultivars with LRE exhibited improved growth indices (plant height and number of leaves) and yield-related features (bulb length, bulb diameter, and bulb weight) in comparison with the corresponding LRE-devoid control plants. Pretreatments with LRE also improved the nutritional and antioxidant properties of bulbs of both cultivars, which was linked to improved mineral (e.g., K+ and Ca2+) acquisition, and heightened activities of enzymatic antioxidants (e.g., superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase, and glutathione S-transferase) and increased levels of non-enzymatic antioxidants (e.g., ascorbic acid, reduced glutathione, phenolics, and flavonoids). LRE also elevated the contents of proline, total free amino acids, total soluble carbohydrates, and water-soluble proteins in both onion bulbs. In general, both cultivars displayed positive responses to LRE pretreatments; however, the Shandaweel cultivar performed better than the Giza 20 cultivar in terms of yield and, to some extent, bulb quality. Collectively, our findings suggest that the application of LRE as biostimulant might be an effective strategy to enhance bulb quality and ultimately the productivity of onion cultivars under field conditions.


Subject(s)
Antioxidants/pharmacology , Crop Production , Glycyrrhiza/chemistry , Onions/drug effects , Plant Extracts/pharmacology , Plant Roots/chemistry , Amino Acids/metabolism , Antioxidants/chemistry , Biomarkers , Carbohydrate Metabolism , Onions/physiology , Oxidation-Reduction , Photosynthesis , Pigments, Biological/biosynthesis , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism
12.
Article in English | MEDLINE | ID: mdl-33865544

ABSTRACT

Quantum Dots (QDs), are considered as promising tools for biomedical applications. They have potential applications in agricultural industries, novel pesticide formulations, use in bio-labels and devices to aid genetic manipulation and post-harvest management. Since interactions with higher plants are of important environmental and ecological concern we investigated the cytotoxicity and genotoxicity of CdSe QDs in a model plant (Allium cepa) and established relationships between QDs genotoxic activity and oxidative stress. Allium cepa bulbs with intact roots were exposed to three concentrations of CdSe QDs (12.5, 25 and 50 nM). Cell viability and mitotic frequencies was measured for cytotoxicity, and to assess the genotoxicity DNA lesions, chromosome aberrations and micronuclei were evaluated. We report that QDs exerted significant genotoxic effects, associated with oxidative stress. This could be correlated with the retention of Cd in Allium roots as a dose-dependent increase with the highest uptake at 50 nM of CdSe QD. Oxidative stress induced by CdSe QD treatment activated both, antioxidant (SOD, CAT) scavengers and antioxidant (GPOD, GSH) enzymes. Concentrations as low as 25 nM CdSe QDs were cytotoxic and 50 nM CdSe QDs was found to be genotoxic to the plant. These findings enable to determine the concentrations to be used when practical applications using nanodevices of this type on plants are being considered.


Subject(s)
Cadmium Compounds/toxicity , Onions/drug effects , Oxidative Stress/drug effects , Quantum Dots/toxicity , Selenium Compounds/toxicity , Cell Survival/drug effects , Cell Survival/genetics , Comet Assay , DNA Damage , Lipid Peroxidation/drug effects , Micronucleus Tests , Mutagenicity Tests , Onions/genetics , Onions/growth & development , Onions/metabolism , Oxidative Stress/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism
13.
Molecules ; 26(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567661

ABSTRACT

The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from Ipomoea obscura (L.) Ker Gawl. aqueous leaf extract. The UV-visible spectral analysis of the ZnO-NPs showed an absorption peak at 304 nm with a bandgap energy of 3.54 eV, which are characteristics of zinc nanoparticles. Moreover, the particles were of nano-size (~24.26 nm) with 88.11% purity and were agglomerated as observed through Scanning Electron Microscopy (SEM). The phyto-fabricated ZnO-NPs offered radical scavenging activity (RSA) in a dose-dependent manner with an IC50 of 0.45 mg mL-1. In addition, the genotoxicity studies of ZnO-NPs carried out on onion root tips revealed that the particles were able to significantly inhibit the cell division at the mitotic stage with a mitotic index of 39.49%. Further, the cytotoxic studies on HT-29 cells showed that the phyto-fabricated ZnO-NPs could arrest the cell division as early as in the G0/G1 phase (with 92.14%) with 73.14% cells showing early apoptotic symptoms after 24 h of incubation. The results of the study affirm the ability of phyto-fabricated ZnO-NPs from aqueous leaf extract of I. obscura is beneficial in the cytotoxic application.


Subject(s)
Ipomoea/metabolism , Nanoparticles/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Biphenyl Compounds/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/metabolism , Free Radical Scavengers/pharmacology , Free Radical Scavengers/toxicity , Green Chemistry Technology , HT29 Cells , Humans , Mutagenicity Tests , Onions/drug effects , Onions/genetics , Picrates/chemistry , Zinc Oxide/metabolism , Zinc Oxide/toxicity
14.
Sci Rep ; 11(1): 2534, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510323

ABSTRACT

Cornelian cherry (Cornus mas L.) is a medicinal plant with antioxidant-rich fruits. Diniconazole, a broad-spectrum fungicide, is employed extensively. The present study was designed to evaluate the preventive efficiency of C. mas fruit extract (CME) against the toxic effects of diniconazole on a model organism, Allium cepa L. For this aim, physiological, cytogenetic and biochemical parameters as well as the meristematic cell damages were investigated in A. cepa treated with diniconazole and C. mas extract. A. cepa bulbs were divided into six groups which were treated with tap water, 0.5 g/L CME, 1.0 g/L CME, 100 mg/L diniconazole, 0.5 g/L CME + 100 mg/L diniconazole and 1.0 g/L CME + 100 mg/L diniconazole, respectively. Diniconazole application caused a significant reduction in germination percentage, root elongation and total weight gain. Mitotic index decreased, while chromosomal aberrations increased following diniconazole application. Diniconazole caused significant rises in malondialdehyde content and the total activities of superoxide dismutase and catalase enzymes. The meristematic cell damages induced by diniconazole were indistinct transmission tissue, epidermis cell deformation, thickening of the cortex cell wall and flattened cell nucleus. Aqueous C. mas extracts induced a dose-dependent prevention and amelioration in all damages arisen from diniconazole application.


Subject(s)
Cornus/chemistry , Fruit/chemistry , Fungicides, Industrial/pharmacology , Onions/drug effects , Plant Extracts/pharmacology , Protective Agents/pharmacology , Triazoles/pharmacology , Germination/drug effects , Mutagenicity Tests , Plant Extracts/chemistry , Plant Roots/drug effects , Protective Agents/chemistry
15.
J Toxicol Environ Health A ; 84(10): 399-417, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33494643

ABSTRACT

Combretum leprosum Mart. (Combretaceae), a shrub popularly known as mofumbo, is used in folk medicine for treatment of uterine bleeding, pertussis, gastric pain, and as a sedative. The aim of this study was to (1) determine the phytochemical profile,(2) identify chemical constituents and (3) examine antioxidant and cytogenotoxic activity of ethanolic extracts and fractions of stem bark and leaves. The plant material (leaf and stem bark) was submitted to extraction with ethanol, followed by partition using hexane, chloroform, and ethyl acetate. It was possible to identify and quantify the epicatechin in the ethanolic stem bark extract (0.065 mg/g extract) and rutin in the leaf extract (3.33 mg/g extract). Based upon in vitro tests a significant relationship was noted between findings from antioxidant tests and levels of total phenolic and flavonoid. Comparing all samples (extracts and fractions), the ethyl acetate fractions of stem bark (411.40 ± 15.38 GAE/g) and leaves (225.49 ± 9.47 GAE/g) exhibited higher phenolic content, whereas hexanic fraction of stem bark (124.28 ± 56 mg/g sample) and ethyl acetate fraction of leaves (238.91 ± 1.73 mg/g sample) demonstrated a higher content of flavonoids. Among the antioxidant tests, the intermediate fraction of stem bark (28.5 ± 0.60 µg/ml) and ethyl acetate fraction of leaves (40 ± 0.56 µg/ml) displayed a higher % inhibition of free radical DPPH activity, whereas intermediate fraction of stem bark (27.5 ± 0.9 µg/ml) and hydromethanol fraction of leaves (81 ± 1.4 µg/ml) demonstrated inhibition of the free radical ABTS. In biological tests (Allium cepa and micronucleus in peripheral blood), data showed that none of the tested concentrations of ethanolic extracts of leaves and stem bark produced significant cytotoxicity, genotoxicity, and mutagenic activity.Abbreviations AA%: percentage of antioxidant activity; ABTS: 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid); CEUA: Ethics Committee in the Use of Animals; TLC: Thin Layer Chromatography; DNA: deoxyribonucleic acid; DPPH: 1,1-diphenyl-2-picrylhydrazyl; ROS: Reactive oxygen species; EEB: ethanol extract of the stem bark; HFB: Hexanic fraction of stem bark; IFB: Intermediate fraction of stem bark; CFB: Chloroform fraction of stem bark; EAFB: Ethyl acetate fraction of stem bark; HMFB: Hydromethanol fraction of the stem bark; EEL: Ethanol extract from leaves; HFL: Hexane fraction of leaves; CFL: Chloroform fraction of leaves; EAFL: Ethyl acetate fraction of leaves; HMFL: Hydromethanol fraction of leaves; GAE: Gallic Acid Equivalent; IC50: 50% inhibition concentration; HCOOH: Formic acid; HCl: hydrochloric acid; HPLC: High-performance liquid chromatography; MN: micronucleus; WHO: World Health Organization; UFLC: Ultra-Fast Liquid Chromatography; UESPI: State University of Piauí.


Subject(s)
Antioxidants , Combretum/chemistry , Flavonoids , Phenols , Plant Extracts/pharmacology , Plant Extracts/toxicity , Antioxidants/pharmacology , Cytotoxins/toxicity , Flavonoids/pharmacology , Flavonoids/toxicity , Micronucleus Tests , Mutagens/toxicity , Onions/drug effects , Phenols/pharmacology , Phenols/toxicity , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/toxicity , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Stems/chemistry
16.
J Appl Genet ; 62(1): 85-92, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33409932

ABSTRACT

Tungsten oxide nanoparticles or nanopowder (WO3NPs) is commonly used in various industries and also in biomedical applications such as additives, pigments, and biomedical sensors. Non-judicious excessive use of these nanoparticles (NPs) could be a serious human health concern. Therefore, the current study aimed to explore the cytotoxic and genotoxic assessment of WO3NPs through Allium cepa anaphase-telophase and comet assays. Nanoparticles were characterized through the scanning and transmission electron microscopy (TEM), zetasizer, and energy-dispersive X-ray spectroscopy. The mean size and the average diameter of WO3NPs were determined as 21.57 ± 2.48 nm and 349.42 ± 80.65 nm using TEM and a Zetasizer measurement system, respectively. Five concentrations (12.5 mg/L, 25 mg/L, 50 mg/L, 75 mg/L, and 100 mg/L) of WO3NPs were employed on the Allium cepa (A. cepa) roots for 4 h. Significant (p ≤ 0.05) decrease in mitotic index (MI) was shown by WO3NPs at all concentrations. The increase of chromosomal aberrations (CAs) was also observed in a concentration-dependent manner due to the WO3NPs exposure. There was a significant increase (p ≤ 0.05) in DNA damage at all concentrations of WO3NPs on the A. cepa cells. It was concluded that WO3NPs had cytotoxic and genotoxic effects on A. cepa meristematic cells. Moreover, further cytogenetic effects of WO3NPs should be investigated at the molecular level to assess its safety margin.


Subject(s)
Nanoparticles , Onions/genetics , Oxides/toxicity , Tungsten/toxicity , Chromosome Aberrations , Comet Assay , DNA Damage , Nanoparticles/toxicity , Onions/drug effects , Plant Roots , Telophase
17.
Environ Geochem Health ; 43(5): 2143-2164, 2021 May.
Article in English | MEDLINE | ID: mdl-33400008

ABSTRACT

Discharged pulp and paper mill wastewater (PPMW) were collected near M/s K. R. pulp and papers Limited, Shahjahanpur, India. Chemical analysis of the wastewater showed high BOD (3653-4180 mg L-1) and COD (17,890-19100 mg L-1) values from two different sampling sites. The levels of total phenol were in the range of 389-432 mg L-1; nitrogen (125-234 mg L-1), sulfate (1926-2098 mg L-1), chloride (3.12-5.43 mg L-1) and lignin (38,950-39,000 mg L-1) along with various heavy metals (Fe, 87-79; Zn, 34-22; Cu, 3.28-2.57; Cd, 1.90-0.36; Ni, 6-5, and Pb, 41.23-36.54 mg L-1) were above the permissible limits recommended by the CPCB and the USEPA. The BOD/COD ratio was < 0.2 which indicated very low biodegradability of the organic matters present in the effluent. The organometallic complex generated from the pulp and paper industry persists in the environment and might be toxic to aquatic organisms. The organic polymers, lignin, metals and ions present in the PPMW were characterized using SEM, EDAX, FTIR, and UV-VIS spectroscopy. The major pollutants detected in the discharged PPMW included nonacosane, heptacosane, octadecanoic acid, hexadecane, and 6-benzamide- 3- [2- [1-(phenylmethyl)-4-piperidinyl] ethyl]-1, 2-benzisoxazole, as well as a group of plant fatty acids classified as EDCs, and mutagenic pollutants. The cytotoxic and androgenic properties of these complex organics were examined. The seed germination test with Phaseolus mungo and cytotoxicity test with Allium cepa showed that at > 20% concentration of PPMW, α-amylase production was inhibited and chromosomal segregation at metaphase and anaphase during cell division was disturbed, which resulted in c-mitosis, sticky chromosomes, and laggard chromosomes. In addition, SEM of the root of A. cepa showed fissures and fractured tissues of the root cap, probably due to the inhibition of auxins that were responsible for root cap formation. The findings indicated A. cepa as a good test model for examining the DNA damage and cytotoxicity by PPMW, and the discharged effluent should be treated at a tertiary stage for environmental protection.


Subject(s)
Onions/drug effects , Toxicity Tests/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Germination/drug effects , India , Lignin/analysis , Metals, Heavy/analysis , Nitrogen/analysis , Phenols/analysis , Seeds/drug effects , Solvents/chemistry , Vigna/drug effects , Waste Disposal, Fluid/methods , Wastewater/chemistry
18.
Nat Prod Res ; 35(10): 1676-1681, 2021 May.
Article in English | MEDLINE | ID: mdl-31174428

ABSTRACT

Dichloromethane (DCM) fraction and sub-fractions obtained from Smilax brasiliensis leaves were examined in order to determine their phytotoxic and antioxidant effects. The dichloromethane fraction was submitted to a preparative layer chromatography leading to seven sub-fractions (DCM1-DCM7). Gas chromatography-mass spectrometry (GC-MS) was performed on the dichloromethane sub-fractions. The DCM sub-fractions presented phytotoxic potential; at a concentration of 125 µg per plate, DCM6 and DCM4 showed the strongest results on Lactuca sativa and Allium cepa, respectively. The DCM fraction and DCM4 sub-fraction were more effective than 2,6-di-tert-butyl-4-methylphenol (BHT) at scavenging the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Analysis by GC-MS showed the presence of methyl palmitate (33.05%) in DCM4 and methyl palmitate (17.29%) and methyl oleate (50.96%) in DCM6, suggesting that the activities exhibited by the sub-fractions may be attributed, at least partially, to these major compounds. These results indicate that the DCM sub-fractions of S. brasiliensis could be used as natural herbicides and antioxidants.


Subject(s)
Antioxidants/pharmacology , Plant Extracts/pharmacology , Smilax/chemistry , Antioxidants/chemistry , Gas Chromatography-Mass Spectrometry , Lactuca/drug effects , Methylene Chloride/chemistry , Onions/drug effects , Palmitates/analysis , Plant Extracts/chemistry , Plant Extracts/toxicity , Plant Leaves/chemistry
19.
J Ethnopharmacol ; 266: 113416, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-32980485

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochia indica L. (Aristolochiaceae) is a common medicinal plant described in many traditional medicine as well as in Ayurveda used against snakebites. Besides, the plant has also been reported traditionally against fever, rheumatic arthritis, madness, liver ailments, dyspepsia, oedema, leishmaniasis, leprosy, dysmenorrhoea, sexual diseases etc. The plant is known to contain its major bioactive constituent aristolochic acid (AA) known for its anti-snake venom, abortifacient, antimicrobial and antioxidant properties. MATERIALS AND METHODS: This present work describes a validated, fast and reproducible high performance thin layer chromatography (HPTLC) method to estimate AA from the roots of 20 chemotypes of A. indica procured from 20 diverse geographical locations from the state of West Bengal, India. Further, an evidence-based approach was adopted to investigate the reported anti-venom activity of the aqueous extracts of the A. indica roots by assessing its phospholipase A2 (PLA2) inhibitory properties since PLA2 is a major component of many snake-venoms. Finally, the cytotoxicity and genotoxicity of the aqueous root extract of the Purulia (AI 1) chemotype were assessed at various concentrations using Allium cepa root meristematic cells. RESULTS: The highest amount of AA (7643.67 µg/g) was determined in the roots of A. indica chemotype collected from Purulia district followed by the chemotypes collected from Murshidabad, Jalpaiguri and Birbhum districts (7398.34, 7345.09 and 6809.97 µg/g respectively). This study not only determines AA in the plants to select pharmacologically elite chemotypes of A. indica, but it also identifies high AA producing A. indica for further domestication and propagation of the plants for pharmacological and industrial applications. The method was validated via analyzing inter-day and intra-day precision, repeatability, reproducibility, instrumental precision, limit of detection (LOD) and limit of quantification (LOQ) and specificity. Chemotypes with high AA content exhibited superior anti-PLA2 activity by selectively inhibiting human-group PLA2. Moreover, A. indica root extract significantly inhibited mitosis in Allium cepa root tips as a potent clastogen. CONCLUSIONS: The present quick, reproducible and validated HPTLC method provides an easy tool to determine AA in natural A. indica plant populations as well as in food and dietary supplements, a potential antivenin at one hand and a possible cause of aristolochic acid nephropathy (AAN) at another. Besides, the cytotoxic and mitotoxic properties of the root extracts should be used with caution especially for oral administration.


Subject(s)
Antidotes/pharmacology , Aristolochia/chemistry , Aristolochic Acids/pharmacology , Plant Extracts/pharmacology , Antidotes/isolation & purification , Antidotes/toxicity , Aristolochic Acids/isolation & purification , Chromatography, Thin Layer , Humans , Medicine, Traditional , Meristem/cytology , Meristem/drug effects , Mitosis/drug effects , Mutagenicity Tests , Onions/cytology , Onions/drug effects , Phospholipase A2 Inhibitors/isolation & purification , Phospholipase A2 Inhibitors/pharmacology , Phospholipase A2 Inhibitors/toxicity , Plant Extracts/chemistry , Plant Extracts/toxicity , Plant Roots , Reproducibility of Results
20.
J Med Food ; 24(2): 161-171, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32543960

ABSTRACT

The Asteraceae family is widely known for its therapeutic, aromatic, and nutritional properties. Chaptalia nutans (C. nutans), a member of the family, is widely used in folk medicine in southern Brazil. In this study, we aim to assess compounds present in root extracts of C. nutans, and evaluate their antioxidant capacity and toxicity. To determine the chemical composition of the extract, was performed through Liquid Chromatography coupled with Mass Spectroscopy. Antioxidant capacity, toxicity (Artemia salina biosassay), cytotoxicity, genotoxicity (Allium cepa test), and neurotoxicity (Drosophila melanogaster model) were evaluated. A large number of bioactive phytoconstituents were determined to be present, such as alkaloids, coumarins, flavonoids, terpenes, and especially phenolic compounds, which may explain the antioxidant capacity of the extract. Extracts had the capacity to protect cells from protein and lipid damage, and inhibit the formation of oxygen radicals. The A. salina bioassay revealed that extracts were only slightly toxic. In A. cepa, cells exposed to 1.5 mg/mL extract were protected against chromosomal damage caused by glyphosate, and had mitotic index values that were reduced by 49%. A concentration of 10 mg/mL extract did not kill flies, and when coadministered with paraquat (PQ) (52.5%) produced a mortality rate of only 18.75%. These findings indicated that the extract had the potential to protect against PQ-induced neurotoxicity. Taken together, these data reveal for the first time that the root extract of C. nutans is a rich source of natural antioxidants. The extract may be useful in the food and pharmaceutical industries.


Subject(s)
Antioxidants , Artemia , Asteraceae , Drosophila melanogaster , Onions , Plant Extracts , Plant Roots , Animals , Antioxidants/pharmacology , Artemia/drug effects , Asteraceae/chemistry , Brazil , DNA Damage/drug effects , Drosophila melanogaster/drug effects , Neuroprotective Agents/pharmacology , Onions/drug effects , Plant Extracts/pharmacology , Plant Extracts/toxicity , Plant Roots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...